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1 INTRODUCTION 

Grid computing has opened up possibilities for e-Scientists to conduct and collaborate on computer 

intensive experiments which would have once been infeasible. However, there remains many issues in 

the adoption of grid computing, and as such virtualisation can be applied to solve these many issues. 

This project examines how platform virtual machine environments can be automatically and 

dynamically created as work units and how they could be incorporated into a workflow. This includes 

a review of the issues related with the development and deployment software on to platform virtual 

machines, and how platform virtual machines can be deployed, maintained, and orchestrated across 

the grid, therefore simplifying the effort required by e-Scientists to conduct high-performance 

computing experiments on grid infrastructure as well as in the hope of a greater adoption of grid 

computing. 

To greater understand what is required for incorporating virtualisation into grid computing; we will first 

look at high-performance computing and e-Science. This will look at the evolution of e-Science 

(Section 2) from its early period starting with cluster computing, its evolution in to grid computing, the 

introduction of scientific workflows, and finally the use of large-scale e-Science. An understanding of 

the problems associated with the uptake and use of grid computing will be analysed to gain a greater 

understanding of what is required by e-Scientists in modern day computing for experimentation on the 

large-scale e-Science infrastructure. This will then be followed by a more technical look at 

virtualisation (Section 3), specifically examining virtualisation in high-performance computing, and 

how it is applied in grid computing. Emerging architectures will be discussed with a concentration on 

platform virtual machines as work units. Finally this review will examine how platform virtual 

machine work units can be orchestrated across the grid including the configuration, deployment and 

execution of such units. 
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2 E-SCIENCE 

E-Science [1], also known as cyber-science, is the use of computing resources in aiding and 

supporting of complex experimentation. Nentwick[2] is his book about e-Science compares this 

against traditional science which he refers to as “science and research without the use of networked 

computers”. E-Science - the next evolution of science - exploits the power of computation and 

immense data sets and allows e-Scientists to conduct experiments that were once not possible. For 

example, Scientific fields in bioinformatics, social simulations, earth sciences, and particle physics 

can benefit from e-science to help deal with the large amounts of data and computational complexities 

[3].  

E-Science incorporates the use of collaborative communication information technology in the sharing 

and distribution of scientific effort. Previously research and science was conducted by individuals 

with very little collaboration. However with the growth of information technology and the global 

community, science and research is now being conducted across many national borders and of people 

in many different fields. E-Science facilitates the sharing of resources, from scientific resources to 

computational resources, and instrumentation resources. 

E-Science has been made possible with the use of computing technologies such as the Internet, 

networked computers, peer-to-peer computing, high-performance computing and distributed 

computing. Users of e-Science paradigms are generally referred to as e-Scientists. 

2.1 HIGH PERFORMANCE COMPUTING 

E-Science experiments can involve the processing large amounts of data which can be 

computationally expensive or in some cases data is not presence such as algorithms that are 

computationally expensive. Such computations, without exploiting parallelism, can take amounts of 

time that exceed the existence of the earth. However, when exploiting parallelism these 

computationally experiments can be computed within reasonable amounts of time. The paradigm of 

pushing computer performance is referred to as high-performance computing (HPC). 

Kuck[4] argues the critical issue in high-performance computing directly related to design of software 

for exploiting the parallelism provided by modern computing architecture. As such different 

computing architectures have emerged as a result of computer scientists rethinking the design of 

software from sequential computation to parallel computation. Such computing infrastructures include 

supercomputers, cluster computing and grid computing. 

Initially high-performance computing started with mainframes and single supercomputers that were 

often made up of many processors. This provided a centralised way of providing high-performance 

computing, though the cost of such computing hardware is expensive and generally outside the budget 

of most research initiatives. Even when such infrastructure was available, access to computing time 

was often restricted and under great demand. As a result less expensive high performance computing 

architectures came about such as cluster computing and grid computing. 

In response to the needs of high-performance computing, various computing paradigms have been 

created and include parallel programming techniques. One such paradigm is the message passing 

interface (MPI)[5]. This paradigm defines a set of communication protocols for communicating with 

parallel entities and is designed to be language independent, scalable, portable, and high-

performance[5]. Support for MPI is implemented in most programming languages through APIs. 
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2.2 COMPUTING CLUSTERS 

Cluster computing was the next step in the evolution of high-performance computing. Instead of 

developing a single supercomputer, cluster computing uses multiple separate computers to provide the 

mechanisms needed for parallelism to fulfil the requirements of high-performance computing. This 

cluster of computers appears as a single logical computer and such has approximately the combined 

performance of all the computers in the cluster minus management overheads. 

Sterling[6] defines a computer cluster as “any ensemble of independently operational computers 

integrated by means of an interconnection network and supporting user-accessible software for 

organising and controlling concurrent computing tasks that may cooperate on common application 

program or workload”. 

The power of cluster computing can be shown by the significant occurrence of computing clusters in 

the top 500 fastest computers in the world[7]. 

The Beowulf cluster[8] is a prominent example of cluster computing. An implementation of networks 

of workstations[9] and parallel workstations, the Beowulf cluster moves away from traditional high-

performance computing methods of using specialised  computing infrastructure such as 

supercomputers with multiple processors and instead opting for the use of “commodity parts” 

available significantly reducing the costs. Combining a large number of workstations allows for the 

Beowulf cluster to provide infrastructure that supplied large computational power and data storage to 

be utilised by scientists for conducting earth and space scientific experiments and simulations.  

However the costs of cluster computing are still an issue as dedicated computers are required for 

enabling the cluster and to truly reach the high-performance of modern e-Science requirements a large 

quantity of computers are required, which each in there own right take up physical space and energy. 

Due to nature of cluster computing, these dedicated workstations are homogeneous in nature as they 

often have very similar characteristics in terms of hardware and software. This allows easier 

development of applications for cluster computing and management of such computing environments. 

However the integration between the workstations is different in architecture than traditional multi-

processor computation and often relies on computer communication techniques to ensure that the 

high-performance can be maintained[10]. 

2.3 GRID COMPUTING 

Cluster computing offers opportunities of high-performance computing, however it required that 

resources were dedicated and homogeneous in nature. However with the presence of the Internet and 

the large quantity of computer networks available and cheap bandwidth; the utilisation of such 

heterogeneous and dynamic resources has been made possible with grid computing[11]. 

The concept of the computational grid was introduced as an analogy to the power grid of the 20
th
 

century[11]. Foster and Kesselman describe it in the terms of computational cycles being the same as 

electricity and such should be available as a universal service. The grid in which they refer to as in the 

terms of electricity, should provide a “reliable, low-cost access to a standardised service, with the 

result that power … became universally available”[10]. This meaning in the terms of computation 

grids is a computing infrastructure that provides a service with standard interfaces, widely available, 

and inexpensive to use[10]. 
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Foster and Kesselman define the following attributes those which are critical to the concept of the 

computational grid service and the adoption of grid computing and its viability in the future as a new 

computing paradigm [10]: 

• Dependable – A guarantee that computational performance will be maintained and acceptable 

to the user. 

• Consistent – Standardised interfaces and protocols to access the grid.  

• Pervasive – A guarantee that the computation grid is always available regardless of location. 

• Inexpensive – That access to computational resources is affordable. 

Grid computing provides the premise of exploiting under utilised loosely-coupled resources, the 

increased use of parallel computing, the formation of virtual resources and virtual organisations, 

access to additional heterogeneous resources, distributed resource balancing, increased reliability with 

redundancy, and management across organizational boundaries[12]. Grid resources can include 

computational resources, storage resources, network resources, and instrumentation resources[13]. 

Grid computing middleware is still maturing. However, its use in e-Science is being utilised in many 

scientific projects. Undoubtedly the most recognised use of grid computing is SETI@home[14] and 

Genome@home[15] where both projects rally up public support for their projects, in computing 

signals for detecting the presence of intelligent life and unravelling the human genome respectively, 

by utilising the unused computational resources of their supporters.  

Using the grid is important for the adoption of the grid. The logical process of interaction between the 

grid and user is usually as follows[16]: 

1. User requiring grid access organises account creation and then ensures grid access is available 

by installing grid software to join their computing resource to the grid. 

2. The user then proceeds to connect to the grid by using the software installed. The user is then 

usually required to authenticate using their previously created account. 

3. Users then may query the grid to determine if there enough computing resources available for 

usage. If available the user then proceeds to submit their job on to the grid. 

4. Users may need to specify data configurations for streaming into multiple jobs. 

5. Once a job is submitted users may need to monitor the jobs as they execute to ensure 

completion. 

6. If required users may need to reserve certain grid resources for use during their jobs. 

To construct a grid requires the cooperation of all the resources within the grid requiring a set of 

procedures and protocols that define the grid architecture[17]. These procedures and protocols need to 

be defined for communication, computation, security, scheduling, and resource brokering. To 

orchestrate and facilitate these protocols and procedures implementations of frameworks have been 

developed to help define grid computing environments. 

One such grid framework is known as Globus[18]. Foster and Kesselman define Globus as a low-level 

toolkit that provides “basic mechanisms such as communication, authentication, network information, 

and data access”[18]. The Globus Toolkit provides the needed foundation support by abstracting all 

the above mechanisms in to what Foster and Kesselman refer to as the Globus Metacomputing 

Abstract Machine[18]. This abstraction allows higher-level services that assist in developing and 

managing e-Scientist applications sit on top of this infrastructure using the features and mechanisms 

provided by this toolkit. 
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This abstraction is critical to adoption of grid computing, however with the recent popularity of web 

services, collaboration between major vendors and the Globus team have led to the creation of the 

Open Grid Services Architecture(OGSA)[19] in which the models and designs of grid architecture and 

web service architecture is being combined[17]. 

However, even with such infrastructure there are many challenges still left in grid computing. Due to 

the nature of grid computing, application development for this new computing paradigm will still 

prove difficult even with the advances made in distributed computing over the last decades[10]. This 

is related to the heterogeneous makeup of the grid.  

Managing and deploying grids also provide challenges as grid infrastructure needs to be ported and 

setup on computing resources. Resources need to monitored and analysed to provide feedback to 

ensure that the performance of the grid is consistent. The nature of grid computing means that 

resources can be removed and added to the grid making grid computing a dynamic computing 

environment and may present issues to grid application development.  

Another issue with grid architecture is that grid resources are used alongside their local users and such 

resource resources such as the CPU, memory, and storage are shared. This can lead to security issues 

if sensitive applications and data are run across the grid as these maybe accessed without 

authorisation. Vice versa, grid applications running may invertible maliciously attack the grid 

resource. Such problems as these limit the potential of grid computing.  

2.4 LARGE SCALE E-SCIENCE AND GRID APPLICATION DEVELOPMENT 

Grid computing has opened up possibilities for e-Scientists to conduct and collaborate on computer 

intensive experiments which would have once been infeasible. The next generation of large scale 

experiments for E-Science requires access to large scale computing resources and data storage. High-

performance computing experiments can now be run without requiring a dedicated super-computer. 

E-Science infrastructure now extends to providing users with science portals for easy access to such 

infrastructure, the ability to use distributed computing to allow computational experiments to be 

computed at high-performance, large-scale data analysis using the distributed storage, integration of 

other scientific resources such as radio and optical telescope data, and the distribution of collaborative 

work in the scientific community[11]. 

Foster and Kesselman[10] define the applications of a grid into five categories: distributed 

supercomputing, high-throughput computing, on-demand computing, data-intensive computing, and 

collaborative computing. These categories are core to large scale e-Science. 

Due to the nature of the computing landscape, grids commonly consist of heterogeneous resources; 

every resource on a grid can potentially have different physical characteristics and a different 

configuration. For an e-Scientist to successfully use the full potential of a grid they must tailor their 

experiment to run on all or a subset of these resources. In most cases an e-Scientist may have some 

experience in software development. However, their main concern is in their field of research. For e-

scientists, the process of developing and deploying software across a range of platforms, 

configurations and organisational boundaries is challenging[20, 21]. 

Traditional software life-cycles follow a development, deployment, testing and debugging, and 

execution and this applicable to the development of grid software[22]. The two major challenges in 

grid computing are development and deployment of grid applications. 
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Development of grid software requires a way of implementing software on many different platforms 

and computing architectures. This has been made possible by using interpreted and application 

runtime architecture; however use of such languages may not be suitable for some cases e-Scientists 

as high-performance computing may need the performance of native applications. However, there has 

been significant advances in this area[23]. Testing and debugging of grid software poses some issues 

as grid software behaviour may be dependent on specific grid resources. Reporting mechanisms can 

be used but still require investigative skills on part of the developer for the debugging of software. 

Execution requires the grid software to be schedules and managed across the grid[22]. Unfortunately, 

during this execution grid software could fail and such software requires recovery mechanisms.  

Deployment of grid software requires a method of distribution across the grid and then deploying grid 

software to each grid resource for execution. Applications may be complex in nature and may require 

other software dependencies. Applications may also be required to be redeployed to grid resources as 

updates are made to the application. As mentioned specific grid resources cannot be assumed to exist 

as they may be added and removed at any point during an applications deployment and execution. 

This can pose issues to developers unless the abstraction of such resources is utilised. Grid software 

with specific requirements can only be deployed to grid resources that support these requirements. 

These requirements are usually specified by the developer. 

In response to such issues in software development for grid software specifically development and 

deployment, several implementations of frameworks and architectures have been created; Abramson 

defines this as “Upper Middleware”. 

One such grid framework that implements this upper middleware layer is the “Infrastructure for the 

Deployment of e-Science Applications” (IDEA)[24]. IDEA provides tools for managing deployment 

across grid heterogeneously through DistAnt[20, 21]. It also provides an application-runtime 

environment and automatic deployment tool for grid software. 

Another architecture for the creation and deployment of grid software is the Grid Application 

Development Software (GrADS) Software Architecture[25]. 

2.5 SCIENTIFIC WORKFLOWS 

The complexity of experiments is ever increasing and with the availability of grid computing for high-

performance computing experiments will get more complex. As such to reduce the complexity of 

experiments for e-Science, scientific workflows are used. This is another approach to the creation and 

deployment of grid software. 

Scientific workflows involve the breakdown of an experiment into logical and ordered components 

that may be responsible for the collecting and processing of data. These components may be 

dependent or a dependency for other components within the workflow. Yu and Buyya define 

scientific workflows as the “automation of scientific processes in which tasks are structured based on 

their control and data dependencies”[26]. Scientific workflows have simplified the process of 

designing and executing scientific experiments. As such applications can be created that can specify 

computing resources to be used and how they will be orchestrated[26]. To support this paradigm of 

development for e-Scientists grid workflow systems have been created and utilised. Such workflow 

systems provide the ability for e-Scientists to design their workflow and composition, provide 

workflow scheduling support, facilities for fault tolerance, and finally methods for the movement of 

data[26]. 
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Kepler[27] is a scientific workflow system that allows users to define a workflow using a high-level 

workflow design. It integrates this with execution and runtime interaction and provides access to local 

and remote services and data[27]. Kepler allows execution of jobs on the grid by allowing elements or 

components to be representative of jobs. These include jobs for certificate-based authentication, grid 

job submissions, and grid-based data access. Kepler also provides ways of designing database 

accesses and queries into the workflow design[27]. It also allows the execution of programs based in 

different languages such as Python, and also provides tools for data processing such as the use of 

Perl[27]. 

Scientific workflow systems, such as Kepler, reduce the effort required by e-Scientists to orchestrated 

and conduct scientific experiments on a grid. However, the execution of e-Scientist specific programs 

is still dependent on the infrastructure provided by the grid, though the design of such workflow 

systems allows easy modification for supporting new program execution paradigms.  
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3 VIRTUALISATION 

Virtualisation is a technique of abstracting the underlying physical computing resources into logical 

computing resources. These virtualised resources are accessed by a well-defined interface that maps 

interactions to the underlying implementation of the physical computing resource. Virtualisation is the 

portioning or consolidation of physical and no-existent resources into well-defined logical resources. 

That is virtualisation can allow multiple physical computing resources to be presented as a single 

logical computing resource, the virtualisation of a single physical computing resource into multiple 

logical computing resources, the simplification of a physical computing resource into a logical 

resource using encapsulation, and the emulations of a logical computing resource that has no 

matching physical underlying computing resource. 

Virtualisation of resources can be extended to all aspects of computing. Resources such as CPU’s, 

memory, disk-storage, external-media drives, network devices, graphic hardware, keyboards, etc can 

all be virtualised using the above techniques. Virtualisation can even be extended to virtualising entire 

computing environments, external computing equipment, and entire networks. 

The roots of virtualisation first started around the 1960s in its application of mainframe computing 

where single hardware resources were shared by multiple users[28]. In an attempt to segregate 

different user and their interactions with the mainframe, virtualisation was used to present a separate 

logical computing environment for each user. This prevented users from interrupting and interfering 

with each other and provided a more reliable and recoverable computing environment.  

However, after the lapse in mainframe computing to desktop computing the use and implementations 

of virtualisation declined, and it was not till recently that virtualisation has again become popular in 

research and in industry. 

3.1 VIRTUAL MACHINES 

The use of virtualising an entire computing environment has allowed for the concept of virtual 

machines. These virtual machines can emulate a fully functional computing environment including 

hardware, operating system, and applications. However, some virtual machine implementations do not 

virtualise all these aspects. These virtual machines generally sit on top of a physical computing 

system and/or its operating system. 

Virtual machines can be broken down into two main categories, system virtual machines and process 

virtual machines. Each provides similar advantages and disadvantages. System virtual machines 

emulate from the hardware instruction architecture level, whereas process virtual machines emulate 

from the process level. 

Process or application level virtual machines are emulating the running of a process within the 

computing environment. This kind of virtualisation technique has been adopted by high-level 

languages that are interpreted and keep a separate machine state for each execution. Process virtual 

machines are used to provide application portability by using virtual machines to allow platform 

independence. Examples of popular application virtual machines include the Sun Java programming 

language that runs on Java Virtual Machines (JVM) and the Microsoft .NET programming language 

family that runs on Common Language Runtime (CLR) virtual machine. 
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When multiple virtual machines are shared on the same host, resources are normally shared between 

executing virtual machines. However, each virtual machine should not interfere with the performance 

or operations of a concurrently running virtual machine. This is enforced by the virtual machine 

monitor that ensures that the virtual machines stay within their boundaries, and is inherited from the 

techniques pioneered in operating systems with multi-programming and processes. If the virtual 

machine is sharing with a host operating system the virtual machine monitor implements the isolation 

layer between the two. That is the host operating system sees the virtual machine monitor and virtual 

machines as a single process and treats it accordingly, though the virtual machine monitor, depending 

on implementation, may be integrated into the operating system for performance reasons. This 

separation is known as isolation and encapsulates the entire computing environment into the virtual 

machine, however even with such techniques of isolation mechanisms this isolation is only 

encouraged and not guaranteed[30]. 

Virtual machines can be configured with certain resource allocation limits. This prevents virtual 

machines from dominating a certain host machine. Due to the dynamic nature of virtual machines 

they can also be reconfigured while being executed. This allows virtual machines with increased 

workloads to adapt and virtual machines that are idling to be slowly decommissioned unless woken. 

The implementation of virtual machines normally incorporates a virtual machine monitor and the 

virtual machine which are simply a process and a file respectively. The virtual machine file is known 

as the virtual machine image. This simplistic but powerful abstraction allows the exploitation of 

virtual machine states. This allows virtual machines to be paused and restarted at any execution point. 

From booting to application execution, virtual machines states can be created. Check-pointing of such 

states allows easy recovery if there are any issues within the virtual machine. 

Another advantage of treating virtual machines as files is the automation that can be incorporated into 

the execution across multiple hosts. If a host machine is under load-pressure or ceases to be available, 

virtual machines can be migrated across networks to new hosts without interrupting the sequential 

execution of the virtual machine. In some implementations, live migrations can occur meaning that 

virtual machines are still executing even though the execution location of the virtual machine is 

changing. This is another recovery advantage of using virtual machines.  

Automation is also provided in the sense that virtual machines can be dynamically reconfigured. The 

ability to reconfigure virtual machine resource usage and the ability to move virtual machines across 

multiple hosts allows the fine-grained control of physical resources. The communication and 

coordination between such hosting environments can ensure a high-performance and reliable 

computing environment. 

The creation of virtual machines can also be automated due to the implementation of virtual machines 

as files. These environments can be created and cloned as required without the process of reproducing 

installations of software including the operating system. 

Another important property of virtual machines is the portability provided making the virtual 

machines hardware independent. Like application virtual machines where the code of the application 

can be ported without changes to other machines by simply running the code; virtual machine images 

provide the same portability and such the same virtual machine image can be executed on any 

machine with the same virtual machine monitor. In response to such capabilities and the many 

implementations of virtual machine monitors, attempts at creating an open standard for virtual 

machine images is being lobbied. Virtual machine images will be discussed in more detail later. 
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Finally another important attribute of virtual machines is there ability to provide legacy emulation for 

computing hardware that does not exist or is different to the underlying host’s computer architecture. 

Due to the many attributes of virtual machines, this technology has been applied to many areas such 

as server consolidation, development, malware analysis, trusted computing, and virtual applications. 

There are many different implementations of virtual machine monitors and will only discuss a few 

implementations that are relevant to the project.  

QEMU[31] is a type II virtual machine emulator written by Fabrice Bellard. QEMU provides full 

system emulation for multiple computing architectures; x86, PowerPC, ARM and Sparc; and has been 

ported to many different architectures[32]. It achieves emulation by using a dynamic translator. 

QEMU can also be extended to support native instruction execution virtualisation by using a device 

driver known as KQEMU. QEMU emulator is implemented as an application and as such can be 

launched as a process within a host operating system without requiring administrator access. QEMU 

support multiple file formats for storing virtual machine images, these include QCOW, QCOW2, and 

RAW. 

VMWare a leader in commercial virtualisation products also implement a virtual machine 

monitor[33]. VMWare implements the virtual machine monitor in type I and type II implementations 

known as VMWare GSX and ESX respectively. There type I virtual machine monitor is based on 

slimed down Linux kernel. The virtual machine monitor is only implemented for the x86 architecture 

and likewise can only virtualise x86 virtual machines. Virtual machine images are stored in a file 

format known as Virtual Machine Disk Format (VMDK). 

Xen[34] is another popular commercial virtual machine monitor. However, unlike the above two 

virtual machine monitors mentioned above it is only a type I virtual machine monitor implementation. 

The performance of Xen is one of the major driving forces behind its popularity. 

Another virtual machine monitor worth mentioning but not in detail is the implementation of 

virtualisation in Microsoft’s new Windows server product Server 2008[35]. This is re-entrance from 

Microsoft in the commercial server virtualisation market, however unlike other virtual machine 

monitors; this will be directly integrated into the operating system. 

3.3 VIRTUAL MACHINE IMAGES 

As mentioned previously, virtual machine images represent the virtual machine and its state. Virtual 

machine images are host machine files that store this representation. The advantage of storing virtual 

machines as files is that they can be accessed and operated on the same fashion as any other file. In 

most cases a virtual machine image is simply the disk representation (partitions, boot sector, and file-

systems) of the virtual machine. 

Virtual machine images can be implemented to support dynamic growth based on disk usage or 

completely allocated at the creation of the virtual machine. Dynamic growth ensures disk space of the 

underlying host is only utilised if needed, however this comes at a cost of performance as space is 

allocated when the virtual machine requires additional space. 

This is often exploited for allowing host-to-guest communication and guest-to-host communication. 

Meaning the host can access the virtual machines files, however this is dependent on the 

implementation and in some cases accessing the virtual machine image during its execution may 

inherently cause some damage. 
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Unfortunately there are many different implementations of virtual machine monitors and such many 

different file formats that represent virtual machine images. In response, attempts have been made to 

lobby the creation and adoption of an open virtual machine image standard. There have been many 

submissions for a standard, though the most likely contender is VMWare’s Virtual Machine Disk 

Format (VMDK)[36]. 

The VMDK format supports dynamic growth or complete allocation of the virtual machines image. 

The format also extends to supporting a single file representing the virtual machine image and/or 

multiple files that combine to form the virtual machine image. These multiple files are linked together 

as a chain. Each link in the chain is made up multiple elements referred to as extents. The overall 

structure of the VMDK format includes a header where information such as versioning, machine 

identification, linking information for multiple files, creation method, and other information. The rest 

of the file body contains the data for the extents which represent the virtual disks. More detailed 

information can be found in the VMDK specification[37].  

The advantage of having a single open virtual machine image standard is that a virtual machine is 

independent of the underlying virtual machine monitor and hence increasing the portability of such 

virtual machines over many host machines with different virtual machine monitors. 

Some disadvantages may be the limitations of the specification, however due to the nature of virtual 

machines; further meta-data information could be encoded within the virtual machine’s file system. 

However until an open standard is adopted by major virtualisation vendors this may cause limitations. 

Fortunately there have been developments of creating virtual machine image translators that convert 

one virtual machine file format in to another. For example, in QEMU, the qemu-img create program 

provided alongside QEMU allows the conversion of VMWare formats into the various file formats 

supported by QEMU[38]. However this translation is not reversible at this current stage. 

Because virtual machine images represent hard disks and separate file systems, these files can be 

mounted like any other hard-drive and their file systems accessed. For example, in QEMU, the RAW 

image can be mounted using a loopback device and can be written and read from like any other 

device. VMWare provides a tool, called VMWare Disk Mount Utility[39], that can be installed to 

allow the mounting of the VMDK images. However, even with the mounting of disk images, the 

underlying host must still be able to interpret the virtual machine file-system. 

The nature of files allows the use of snapshots. Snapshots represent the state of a virtual machine at 

any point during execution. These snapshots are normally stored as the changes from the original 

virtual machine image and/or the last snapshot taken. In the example of migration between hosts, the 

original virtual machine image and its subsequent snapshot files can be transferred across to the new 

host and the virtual machine can continue execution from where it last executed. Snapshot support 

however is dependent on the file format and virtual machine monitor that is being used. 

3.4 VIRTUALISATION IN GRID COMPUTING 

Attempts have been made to standardise and make grid computing more accessible[18, 40]. However, 

even with such toolkits and standards, implementing infrastructure and developing for grid computing 

still remains a challenge[22, 24]. In response, virtualisation is being applied as a solution to this 

problem[41]. Virtual machines have been successfully applied to grid computing, using both 

application level virtualisation and platform level virtualisation[41-56]. 
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Application virtual machines that make use of .Net/Java virtual machine technologies are already 

implemented as middleware across different grid implementations[43]. These implementations allow 

e-Scientists to develop portable applications which can be executed across a range of environments. In 

some cases these environments support legacy code to a certain degree[43]. However, they do not give 

complete control for the e-Scientist to completely specify their experiments run-time environment; 

this includes controlling the underlying operating system and other legacy application dependencies. 

Platform virtual machines abstract the entire computing resource by virtualising the underlying 

computer hardware thus emulating a complete computing environment in which the user actions 

and/or executions will not directly affect the underlying resource[29]. Platform virtual machines 

provide isolation, legacy-support, administrator privileges, resource control, and environment 

recovery[41]. Combined, these characteristics have the potential to provide a high level of control 

when conducting experiments in a grid environment. Furthermore, recent advances in virtualisation 

and virtual machines has led to performance overheads being dramatically decreased and has made it 

feasible to apply virtual machines to high-performance computing[57]. This is covered in more detail 

later on. 

The integration of grid computing middleware with platform virtual machines has led to two major 

architectures. The first approach has led to the placing of grid middleware into the virtual machine. 

This approach allows grids to be implemented and deployed by running these virtual machines on the 

grid resources[45]. The second approach is using existing grid infrastructure and using virtual 

machines as a work units for the execution of applications [42, 49, 50]. In this case the grid 

middleware is used for supporting the virtual machine deployment and execution, though it should be 

noted that the first approach can be used in conjunction with this method. 

3.4.1 VIRTUALISATION IN HIGH PERFORMANCE COMPUTING 

High performance computing requires the performance of applications to be optimal and exploit 

parallelism. However, the effort required to implement high performance applications normally 

requires development of applications in low-level languages that are designed and configured to be 

optimally run natively on a designated machine. 

The use of virtualisation leads to overheads that reduce performance. These can be accounted to the 

translation of instructions, the intercepting of sensitive instructions, file system access for reading and 

writing to the virtual machine image, network virtualisation communication, and subset of computing 

resources. 

Recent advances in virtualisation however have now made it possible for high-performance 

computing to be considered for implementation on virtual machine implementations. Though for this 

to be adopted, users have to be assured that the performance of using such techniques will not hamper 

the performance of computation. As such, research has been conducted on the performance of virtual 

machines[41, 58, 59] as well as there feasibility for high-performance computing[57]. 

Macdonnell and Lu[57] in their performance analysis of virtual machines for high-performance 

computing used the popular VMWare GSX virtual machine monitor. They used scientific applications 

to ensure the verification of their results; BLAST, HMMer, and GROMACS[57]. The host hardware 

used the following specifications; dual opteron @ 2.2ghz, 4gb memory, 250g hard-disk and running 

Linux. Each virtual machine was allocated 2GB memory. There tests were aimed at finding how these 

machines performed under stringent I/O activity and computational performance for high-

performance computing. Macdonnell and Lu in there results concluded that the overhead of using 
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virtual machines for computational activities involved an overhead of 6%, while for I/O intensive an 

overhead of 9.7% was observed[57]. 

Application virtual machines have been developed for high-performance computing purposes. One 

such example is Motor[43]. Motor takes advantages of virtualisation and modifies an existing virtual 

machine, the Common Runtime Infrastructure (CLI). The modifications incorporate features needed 

in high-performance computing such as high performance message passing interface (MPI). Other 

modifications include the memory management to handle the inclusion of the MPI modifications. 

Results published indicate that the performance of such virtualisation techniques, however less than 

natively run applications, provide very good performance given the advantages of using 

virtualisation[43]. 

Providing the performance of virtual machines continually improves, the advantages of using 

virtualisation outweigh the overheads in performance for high-performance computing and as such 

should be utilised by grid computing. 

3.4.2 VIRTUAL MACHINES AS INFRASTRUCTURE 

Virtual machines can be effectively used as the platform for supporting grid infrastructure. This is 

following the traditional steps of virtual appliances[60], where virtual machines are used to distribute 

software; in this case the appliance is the grid middleware. 

This architecture allows users to have access to a uniform set of resources. That is, all grid virtual 

machines can be of the same architecture and hence requires less effort when developing and 

deploying grid infrastructure. 

The portability of virtual machine images means that grids can be effectively implemented by 

distributing the virtual machine image. As long as the underlying resource has a virtual machine 

monitor installed, the resource can be added to the grid resources simply by instantiating the virtual 

machine. 

Isolation between the virtual machine and host machine means that any grid infrastructure 

applications and applications running within this grid are kept separate from the underlying resources. 

Any faults within the grid resource will not propagate to the underlying host machine and such 

reassures grid users that grid computing is safe. Likewise, sensitive data and operations are also 

protected in a sense. 

Reliability in the grid can also be assured by using virtual machines; if a resource goes down it can 

easily be recovered by copying the grid virtual machine image.  

Grid Appliances[45] is one such example of using virtual machines for grid infrastructure. Users can 

join the grid by downloading the virtual machine image provided by Grid Appliances. Support for 

multiple virtual machine monitors is made possible by having different virtual machine image 

formats; for now it is VMDK and QCOW2. Once a user starts up a virtual machine, the modified 

guest operating system based on Debian Linux, configures network access which uses a peer-to-peer 

virtual network. This virtual network uses private IP addresses referred to as IPOP[61]. IPOP provides 

a way of distributing IP addresses without a centralised server. Inside the guest operating system, 

Condor is used for job submissions that run within the Debian operating system. Grid Appliances uses 

SAMBA within the guest operating system to setup a network share for the user’s host machine. This 

allows users to copy in required data and applications. Users may also have root access to the virtual 

machine using SUDO provided within most Linux distributions. Grid Appliances provides a test pool 
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of infrastructure of approximately around 500 nodes for testing grid job submissions and 

infrastructure and is distributed across the world. 

However, unfortunately this only solves some issues for e-Scientists. Even though the grid resources 

are now homogeneous in nature, e-Scientists still need to develop applications and deploy 

dependencies to each grid resource. This restricts the set of resources they have access to. Likewise 

they do not completely control or able to completely define their execution environment and such can 

place restrictions when developing experiments. 

3.4.3 VIRTUAL MACHINES AS WORK UNITS 

Virtual machines allow the encapsulation of data and operations and can be easily deployed to virtual 

machine monitors for execution. As such the use of virtual machines as work units allows e-Scientists 

to define their own run-time environment for an experiment application[41]. Virtual machine images 

are submitted as jobs rather than the applications and can be incorporated into scientific workflow 

systems such Kepler. Using this approach removes potential application development issues such as 

portability from the e-Scientist’s responsibility. This can be achieved by using platform virtual 

machines as they emulate a complete machine including its hardware, operating system, and software. 

However this method still poses some problems for e-Scientists as the configuration of such 

environments can be time consuming and requires knowledge of operating systems concepts and 

system administration. 

The process of creating and configuring these environments is tedious. Environments initially need to 

be configured with the base requirements for the experiment such as an operating system, software 

libraries, and other application dependencies. The experiment application then needs to be configured 

and installed within the environment. Experiment data then needs to be sourced and passed into the 

environment either from the experiment repository and/or being streamed from another experiment 

application. The experiment application then needs to be executed within the environment and be 

monitored to ensure that progress is made. Once the experiment is completed the experiment results 

need to be passed back to the experiment repository and/or passed on to another experiment 

application. The environment then needs to be cleaned up to allow the releasing of the underlying grid 

resource. These experiment applications are usually incorporated into a scientific workflow and as 

such this process of configuring environments needs to be repeated multiple times. 

Virtual machine work units are often referred to as sandboxes as they allow users to customise the 

execution environment without compromising the resource[51]. Some techniques have been 

developed so that the virtualisation level is abstracted and the platform, process, and other 

virtualisation levels are not specific to a particular environment; rather the environment is a dynamic 

virtual environment[46] or virtual workspace[47]. 

Santhanam et al[50] defined virtual machine sandboxes into four categories. The first category was a definition 

of virtual machines for infrastructure. The other three categories were more inline of the concept of virtual 

machines as work units. Work units may be entirely encapsulated without network access for execution, and 

would be setup with data leading up to execution. 

Work by Adabala et al. [42], using the original findings by Figueiredo et al[41], led to the creation of a 

grid architecture that incorporated virtualisation. This virtual computing grid was referred to the In-

VIGO (Virtualisation Information Grid Organisation) system. The system enables multiple 

application instances to be executed across virtualised and physical grid resources. In-Vigo also 

incorporates virtual file-systems, virtual machines, virtual applications, virtual networks, and virtual 
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user interfaces[42]. To facilitate the creation and deployment of virtual machines the In-Vigo system 

uses another grid infrastructure tool known as VMPlants[49]. 

Another implementation of virtualisation in grid architecture is an attempt to build on existing Globus 

architecture. In their work known as Virtual Workspaces, Keahey et al. [46-48] push forward the idea 

of virtual workspaces or dynamic virtual environments. These virtual workspaces represent the 

execution environments presented and used by e-Scientists. Users can “negotiate the creation of a new 

execution environments and system administrators to specify policies that govern there use and 

monitor there usage”[47]. There approach differs that instead of mapping jobs to resources, users now 

map jobs are mapped to workspaces. They also argue the need for abstractions of virtualisation 

techniques so not to restrict the use virtual workspaces. 

3.4.4 ORCHESTRATING VIRTUAL MACHINES ACROSS THE GRID 

Using virtual machines as work units requires orchestration of various steps in the creation and 

configuration, deployment, and execution of such environments on the grid. Most of these steps 

would be outside the ability and effort for e-Scientists; however through automation most of these 

steps can be simplified and abstracted. 

3.4.4.1 CREATION AND CONFIGURATION 

The first step in an e-Scientist describing their execution environment is the ability to define the 

requirements of the environment. Customisation of such environments is generally through a 

specification which is provided by the user. These may be passed to a service for auto-configuration 

[42, 49]. VMPlant is one example of a virtual machine factory that is responsible for creating virtual 

machines based on a configuration file supplied by the user.  

Configurations provide the ability to specify virtual machine specification. This includes the 

computational requirements, memory requirements, storage requirements, and any other device 

settings. 

Configurations can be represented in a number of ways. VMPlants for examples uses directed acrylic 

graphs to represent the configuration and installation of software on to virtual machines. XML 

schemas provide another convenient way of specifying requirements. Other approaches include using 

Java or similar object oriented programming languages to specify requirements[60]. OOP language is 

used to allow inheritance in describing virtual machines. 

This represents the basic description of a virtual machine; however more is needed in setting up the 

actual execution environment. Once submitted to a virtual machine image creation program, the 

virtual machine can now be executed. Users could use a local virtual machine monitor to launch this 

virtual machine and would be presented with interface to use this machine[41]. This could be through 

using VNC or other similar methods of terminal computing.  

Because the e-Scientist has complete control of their virtual machine work unit, they have 

administrator access rights, and can tailor there execution environment as needed. This may is 

extremely powerful, however e-Scientists may not have the skills required to setup such an execution 

environment. Other approaches for users to configure there virtual environment could be through 

using software installation approaches. Further information provided by the configuration could be 

used to specify the operating system, required network settings, application and application library 

dependencies, and user folder locations. 
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Given a configuration file, the virtual machine needs to be configured with the requirements. Due to 

likely hood of many configurations sharing the same software requirements, e.g. operating system, 

one approach is to allow the user to make use of an existing bare virtual machine image with an 

operating system already installed. VMPlant uses this method for the initial building block of 

configuration. From this base image, VMPlant then mounts CD-ROM ISO images and uses the auto-

run to launch scripts for the remaining configuration. 
 

Other approaches include allowing virtual machines to be represented with multiple virtual disks, where each 

disk represents a different component of the virtual machine (e.g. operating system, software, libraries, etc). 

These are then combined to form the specified virtual machine. Wolinsky et al. [51] describes this approach 

using a file system known as UnionFS that allows the combination of multiple file systems. More direct 

methods include accessing the virtual machine image directly and installing the software from the host machine. 

3.4.4.2 DEPLOYING 

Once a virtual machine environment has been configured and setup, depending on the workflow 

specified, the virtual machine has to be sent to the grid resource for execution. This virtual machine 

may be potentially cloned and sent to multiple grid resources. 

Virtual machine images can be quite large depending on the execution environment tailored and can 

contain a lot of dark storage; that is storage that is not being utilised. This means that large file 

transfers are required when sending virtual machines. Using file transfer methods such as “on-

demand” access can potentially be used to increase performance[57]. In the case if virtual machines 

are broken into multiple components (operating system, software, etc), then most likely the operating 

system components will be shared among multiple virtual machines and experiments and such can be 

cached locally[51]. 

Depending on the grid infrastructure, virtual machine monitors may not be installed on grid resources. 

In this case the virtual machine monitor needs to be sent along side the virtual machine image, or the 

virtual machine monitor needs to be installed onto the grid resource. If the virtual machine monitor 

already exists on the grid resource, then the correct virtual machine image format needs to be sent. 

This may require the original image being transformed into this new format. However, the virtual 

machine monitor could be send explicitly regardless of the presence of an existing virtual machine 

monitor. This could be in the form of a virtual machine monitor like QEMU that can be executed as a 

process without requiring administrator access on the grid resource. 

The applications within virtual machines will require storage access for the passing of input and 

output, this may streamed in from another virtual machine, or accessing a data store. One method is to 

copy the data directly into the virtual machine image when it is being initially configured. Other 

methods could include using network file systems and/or network communication protocols. 

Streaming between virtual machines may be incorporated into the workflow. 

3.4.4.3 EXECUTING 

Once a virtual machine is received by the grid resource, it must be started. The starting of the virtual 

machine must ensure that the application is started. This can be managed by ensured by having a 

service within the virtual machine responsible for starting the application. Other approaches include 

using start up scripts to launch applications. Virtual machines imitate real systems and such must go 

through a booting process at first start-up. This can increase the time required for executing an 

application, though using check-pointing, the virtual machine state after boot up can be saved and 

restored once received at the grid resource[51]. 
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Network settings within the virtual machine, if enabled, must be also automatically configured. 

Virtual DHCP servers or IPOP could be used in this situation as done by Grid Appliances[45]. 

Most applications may have bugs or cases when there execution is terminated unexpectedly. Virtual 

machines must be monitored during execution and report such events. Obviously the execution 

environment will have internal mechanisms to ensure the recovery of the application, however in 

some cases the entire virtual machine may need to be monitored externally. 

Streaming of data needs to be setup and enabled, connections with other virtual machine units or grid 

resources needs to be coordinated. This could be directly controlled by the application or by a service 

running within the virtual machine. 

3.4.4.4 CLEANING UP 

Once the execution of the applications of the virtual machine is completed, and the data from the 

execution is forwarded onto the next virtual machine and/or data store, the virtual machine 

environment and virtual machine must be handled for decommissioning. 

The first issue is detecting when the virtual machine has completed executing the application. This 

could be controlled by a service within the virtual machine, or signalled by the application. Such 

signals could be data transfer out completing, or the service contacting the user or workflow system. 

Other approaches could monitor the virtual machine performance and note the reduced CPU 

utilisation of the virtual machine. 

Once the application has been deemed completed, the grid resource (the host machine) needs to 

terminate the virtual machine monitor process, hence shutting down the virtual machine. Most virtual 

machines will receive the shutdown signal when the virtual machine monitor process is terminated. 

Finally the virtual machine images need to be handled. A simple method could presumably delete the 

virtual machine image from the grid resource; however a more appropriate approach may be caching 

the image for future use in case the user decides to rerun the workflow.  

3.5 AMAZON ELASTIC COMPUTING CLOUD 

Recently Amazon released a service for using its computing infrastructure. Amazon Elastic Compute 

Cloud (Amazon EC2)[62] provides developers with an application programming interface for 

dynamically creating and managing virtual machines on their large scale web infrastructure. This 

service can be utilised for grid computing by e-Scientists. 

Amazon implements virtualisation within its computing infrastructure however exact details on this 

are commercially kept in confidence. However, they do provide a standard API for controlling and 

managing user’s virtual machines. 

To use this service requires the submission of a virtual machine image. This virtual machine image 

can be configured with any operating system and software; however there are certain terms and 

conditions which restrict usage. These are implemented to prevent the misuse of Amazon’s 

infrastructure. Once the virtual machine image is submitted, users can use the API provided or use 

Amazon’s website to interact and control the execution of their machines. Recently, Amazon 

announced that virtual machine images submitted would now be provided with persistent storage 

meaning that users can shutdown their machines and restart them at later point. 
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Usage of Amazon’s infrastructure is based on a service costs model. User’s pay for what they use, that 

is, Amazon charges on the amount executions that occur. This cost unit is not directly a single 

instruction but rather a measure of the computation ability provided for each instance of virtual 

machine. Users are also charged with any data transfers that occur. 

Amazon uses there own virtual machine image format known as Amazon Machine Image (AMI). 

Amazon provides tools that allow the converting of common virtual machine image formats such as 

VDMK into their own format. Amazon also provides a library of basic AMI that contain operating 

system installs. 

Primarily designed for web server infrastructure deployment, the Amazon EC2 has also been used in 

creating distributed applications. A developers’ network within Amazon provides knowledge on the 

type of applications that can be created using the Amazon EC2[63].   
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